Genetic study in a family with dopa-responsive dystonia revealed a novel mutation in sepiapterin reductase gene

Dopa-responsive dystonia

Keywords: intellectual disability, serotonin, dopamine, autosomal recessive, genome


Dopa-responsive dystonia due to sepiapterin reductase deficiency (OMIM#612716) is caused by recessive mutations in the gene encoding sepiapterin reductase (SPR), which plays an important role in the biosynthesis of tetrahydrobiopterin (BH4). One Jordanian patient to first cousin parents is reported in this study. The parents of the proband have recognized the symptoms of their daughter at six months old with motor developmental delay. The symptoms were progressed after-then to include speech delay, seizure, ataxia, oculomotor apraxia, dysarthia and choreoathetosis. Despite of these symptoms, the clinicians in Jordan were unable to diagnose the case. In August 2018, the proband (8 years old) was presented to the department of biotechnology and genetic engineering at Philadelphia University in Jordan for the purposes of performing whole exome sequencing (WES). Analysis of WES data has revealed novel homozygous frameshift variant in the gene SPR (NM_003124.4:c.40delG,p.Ala15Profs*100). The variant is heterozygous in the parents and in the healthy male siblings. Therefore, the studied case was diagnosed with sepiapterin reductase deficiency. Because this disease is likely to be treated recommendations were given to the family immediately to start treatments trials. The case in this study illustrates the difficulties of diagnosing sepiapterin reductase deficiency based on clinical symptoms only and thus renders the possibilities of early management. Also, this study reinforces the importance of running WES to undiagnosed neurodevelopmental cases.


How to cite this:
Froukh T. Genetic study in a family with dopa-responsive dystonia revealed a novel mutation in sepiapterin reductase gene. Pak J Med Sci. 2019;35(6):1736-1739. doi:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Short Communication