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INTRODUCTION

	 Hepatic	 fibrosis	 is	 the	 basic	 damage	 resulting	
from	 chronic	 hepatitis	 C	 (CHC)	 which	 is	 one	 of	
the	prime	health	challenges.1	The	ultramicroscopic	
changes	 occurring	 in	 hepatic	 fibrosis	 include	
activation	of	hepatic	 stellate	cells	 (HSCs)	which	 is	
triggered	 by	 injury	 to	 hepatocytes.2	 The	 excessive	
secretion	 of	 collagen	 by	 activated	 HSCs	 induces	
hyperplasia	and	deposition	of	extracellular	matrix	
(ECM),	which	ultimately	leads	to	liver	fibrosis	and	
cirrhosis.3,4	 When	 HSCs	 trans	 differentiate	 into	
proliferative,	 and	 contractile	 myofibroblasts,	 they	
express	 certain	 mesenchymal	 markers	 like	 alpha	
smooth	 muscle	 actin,	 encoded	 by	 Actin	 alpha	 2-	
ACTA2	 gene	which	 is	 an	 isoform	 of	 the	 vascular	
smooth	muscle	actin	and	is	expressed	in	all	stages	
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ABSTRACT
Objective: Viral hepatitis is associated with high morbidity and mortality. Identification of biological 
pathways involved in hepatic fibrosis resulting from chronic hepatitis C are essential for better management 
of patients. Constructing the HCV-human protein interaction network through bioinformatics may enable 
us to discover diagnostic biological pathways. We investigated to identify dysregulated pathways and gene 
enrichment based on actin alpha 2 (ACTA2) and glial fibrillar acidic protein (GFAP) interaction network 
analysis in hepatic fibrosis.
Methods: This is an in-silico study conducted at Ziauddin University from March,2019 to September 2019. 
Enrichment and protein–protein interaction (PPI) network analysis of the identified proteins: GFAP and 
ACTA2 along with their mapped gene data sets was performed using FunRich version 3.1.3.
Results: Biological pathway grouping showed enrichment of proteins (85.7%) in signalling pathway by 
epidermal growth factor receptor (EGFR) and Tumor growth factor (TGF)-beta Receptor followed by 
signaling by PDGF, FGFR and NGF (71.4%) (p < 0.001). SRC, PRKACA, PRKCA and PRKCD were enriched in 
both EGFR and TGF-beta Signalling pathways.
Conclusion: EGFR and TGF-beta signalling pathways were enriched in liver fibrosis. SRC, PRKACA, PRKCA 
and PRKCD were enriched and differentially expressed in both EGFR and TGF-beta signalling pathways
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and	grades	of	CHC.5	The	expression	of	contractile	
filaments,	Alpha	smooth	muscle	actin	(α	SMA),	was	
identified	 in	stellate	cells	 forming	a	basis	of	using	
smooth	 muscle	 actin	 as	 an	 immunohistochemical	
marker,	which	detects	HSCs	activation	and	a	useful	
marker	 for	 early	 diagnosis	 of	 hepatic	 fibrosis.6 
In	 addition	 to	 ACTA2,	 studies	 have	 shown	 that	
there	 is	 augmented	 expression	 of	 Glial	 Fibrillary	
Acidic	 -GFAP-positive	 HSCs	 in	 early	 stages	 of	
hepatic	fibrosis.7	The	GFAP gene	encodes	a	class	III	
intermediate	filament	protein	expressed	specifically	
in	astrocytes	of	the	central	nervous	system	and	their	
transformation	capacity	is	well	conserved.8	A	study	
in	rodents	reported	the	expression	of	GFAP	with	an	
increased	expression	in	the	acute	response	to	injury	
in	the	rat,	and	a	decreased	in	the	chronic	one.9	It	is	
reported	that	GFAP	could	represent	a	more	useful	
marker	than	Alpha	smooth	muscle	actin	(α-SMA)	of	
early	HSCs	activation	and	may	be	an	early	indicator	
of	 hepatic	 fibrogenesis.	 Our	 study	 done	 in	 2014	
revealed	strong	association	of	GFAP with	the	gold	
standard	 immunohistochemical	 marker,	 ACTA2 
suggesting	 that	GFAP	 could	 be	 a	 useful	 indicator	
of	 early	 HSCs	 activation	 in	 CHC	 patients.10	 The	
GFAP	positive	hepatic	cells	may	be	antecedents	of	
the	HSCs	detected	by	ACTA2	or	they	may	denote	a	
diverse	subpopulation.11,12 
 Most	common	cause	of	hepatocellular	carcinoma	
(HCC)	in	our	country	is	viral	hepatitis.13	It	is	vital	that	
degree	of	cirrhosis	is	established	by	the	clinician	and	
risk	 factors	 for	HCC	are	 identified.	Bioinformatics	
has	 enabled	 us	 to	 discover	 diagnostic	 biomarkers	
and	 to	 plan	 treatment	 modalities.14	 In	 light	 of	
above	facts,	the	purpose	of	this	study	is	to	identify	
dysregulated	pathways	and	gene	enrichment	based	
on	ACTA2	and	GFAP	interaction	network	analysis	
in	hepatic	fibrosis.

METHODS

 This	is	an	in-silico	study.	GFAP	and	ACTA2	were	
obtained	 by	 immunohistochemistry	 in	 previous	
study9	by	one	of	the	authors	which	was	approved	
by	 the	 Ethical	 Review	 Committee	 (Ref.	 Code:	
1601119ZRBIO)	of	Ziauddin	University.	The	study	
was	done	from	March-September	2019.
	 In	this	study,	the	gene	expression	and	interaction	
of	 GFAP and	 ACTA2	 were	 analysed	 in	 silico.	
Immunoexpression	 of	 GFAP	 revealed	 substantial	
association	 with	 ACTA2 (α-SMA)	 in	 previous	
study	 concluding	 inverse	 relationship	 of	 GFAP 
with	 progression	 of	 fibrosis.	 Hence,	 GFAP	 could	
be	characterized	as	useful	marker	for	early	hepatic	
stellate	cells	activation.	

Bioinformatics analysis: Enrichment	and	protein–
protein	 interaction	 (PPI)	 network	 analysis	 of	 the	
identified	 proteins:	GFAP and	ACTA2 along	with	
their	mapped	gene	data	sets	was	performed	using	
FunRich: Functional Enrichment analysis tool	version	
3.1.3	released	on	March	2017	http://www.funrich.
org14	 The	 enriched	 and	 depleted	 proteins	 were	
identified	by	calculating	fold	change	for	biological	
pathways,	protein	domains	and	site	of	expressions.
Interaction network analysis: In	FunRich	software	
hypergeometric	test,	BH	and	Bonferroni	test	were	
applied.	 Normal	 and	 Overrepresented	 and	 gene	
ontology	 (GO)	 functional	 categories,	 significant	
interactions	and	pathways	associated	with	datasets	
were	 identified	 by	 using	 the	 hypergeometric	 test	
and	p-value	correction	with	the	BH	and	Bonferroni	
tests.	 Statistical	 cut-off	 of	 enrichment	 analyses	
was	 kept	 as	 default	 with	 a	 p=value	 <0.05	 after	
Bonferroni	correction.	

RESULTS

Protein-Protein Interaction (PPI) Analysis of 
GFAP and ACTA2: The	protein–protein	interaction	
network	visualization	and	its	analysis	of	GFAP and 
ACTA2 was	 performed	 using	 FunRich	 database.	
The	 interaction	 network	 included	 the	 biological	
pathway	 enrichment	 of	 defined	 proteins.	 The	
PPI	 network	 was	 among	 differentially	 regulated	
interacting	 proteins	 of	 potential	 retrieved	 from	
interaction	of	GFAP	and	ACTA2	 in Fig.1.	Among	
selected	GFAP	 and	ACTA2	 interacting	44	protein	
genes,	all	had	interactions	with	each	other	as	shown	
in	 Fig.1.The	 gene	mapping	 of	GFAP and ACTA2 

Fig.1:	Protein-Protein	interaction	(PPI)	Network
of	GFAP	and	ACTA2.
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interacting	 proteins with	 their	 chromosomal	
location	 was	 shown	 in	 Table-I. The	 enzymes 
represented	 the	 major	 category	 mapped along	
with	 protein	 kinase	 C	 and	 proto-oncogenes	 of	
tyrosine	 kinase.	 The	 leading	biological	 pathways	
associated	 with	 these	 interacting	 proteins	 were	
signalling	 by	 EGFR	 and	 TGF-beta	 receptor	
signalling	as	depicted	in	Table-I.

	 The	 proteins	 enriched	 in	 Signalling	 by	 EGFR	
Pathway	 were	 HGS,	 CDK1,	 PRKCA,	 SRC,	
PRKCD	 and	PRKACA.	 Likewise,	 Protein-Protein	
interaction	 (PPI)	 Network	 of	 GFAP	 and	 ACTA2	
enriched	 in	 TGF-beta	 receptor	 Signalling	 were	
PRKACA,	 PRKCA,	 CAMK2A,	 SRC,	 SMAD2,	
PRKCD,	CREBB	and	SNTA1.	It	is	worth	mentioning	
that	 SRC,	 PRKACA,	 PRKCA	 and	 PRKCD	 were	

GFAP-ACTA2 Protein Interaction in Liver Fibrosis

Table-I:	Gene	Mapping	and	Biological	Pathways	Enriched	in	Interaction	of	GFAP	and	ACTA2	shown	in	Fig.1.

Gene 
symbol Protein Name Chrom-

osome Map location Interacting Genes with 
GFAP and ACTA 2 Biological Pathway p-value

PRKCD Protein	kinase	
C,	delta 3 3p21.31 CREBBP;	PRKCA;	

EP300;	CDK1;	PRKACA

Retinoic	acid	
receptors-mediated	
signaling

p	=	0.009

HGS

Hepatocyte	
growth	factor-
regulated	
tyrosine	kinase	
substrate

17 17q25 PRKCD;	PRKCA;	SRC;	
VIM;	SMAD2; Alpha6Beta4Integrin p	=	0.01

PRKCA protein	kinase	
C,	alpha 17 17q22-q23.2 PRKCD;	PRKCA;	SRC;	

PRKACA;	ROCK1
Thromboxane	A2	
receptor	signaling p	=	0.017

RC

SRC	proto-
oncogene,	Non-
receptor	tyrosine	
kinase

20 20q12-q13
PRKCD;	PRKCA;	SRC;	
CDK1;	PRKACA;	
PSEN1;	PSEN2

Signalling	by	NGF p	=	0.018

CDK1
Cyclin-
dependent	
kinase	1

10 10q21.1 PRKCD;	HGS;	PRKCA;	
SRC;	CDK1;	PRKACA Signaling	by	EGFR p	=	0.023

PRKACA

Protein	
kinase,	cAMP-
dependent,	
catalytic,	Alpha

19 19p13.1

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
VIM;	PRAKCA;	APP;	
SNTA1

TNF	receptor	signaling	
pathway p	=	0.043

GFAP Glial	fibrillary	
acidic	protein 17 17q21

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
PRKACA;	SMAD2;	
SNTA1;	CAMK2A

TGF-beta	receptor	
signaling p	=	0.051

ACTA2
Actin,	alpha	2,	
smooth	muscle,	
Aorta

10 10q23.3

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
PRKACA;	SMAD2;	
SNTA1;	CAMK2A

Regulation	of	nuclear	
SMAD2/3	signaling p	=	0.051

CREBBP CREB	binding	
protein 16 16p13.3

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
PRKACA;	SMAD2;	
SNTA1;	CAMK2A

Regulation	of	
cytoplasmic	and	
nuclear	SMAD2/3	
signaling

p	=	0.051

PRKCD Protein	kinase	
C,	Delta 3 3p21.31

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
PRKACA;	SMAD2;	
SNTA1;	CAMK2A

ALK1	signaling	events p	=	0.076

PRKCA Protein	kinase	
C,	Alpha 17 17q22-q23.2

CREBBP;	PRKCD;	
PRKCA;	EP300;	SRC;	
PRKACA;	SMAD2;	
SNTA1;	CAMK2A

ALK1	pathway p	=	0.082
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enriched	 in	 both	 EGFR	 and	 TGF-beta	 Signalling	
pathways	as	shown	in	Fig.1.
	 In	 liver	fibrosis,	 there	were	divergent	proteome	
repertoires	regarding	EGFR	and	TGF	beta	receptor	

signalling.	 Superimposed	 bar	 chart	 depicted	
fold	 comparison	 of	 the	 differential	 expression	 of	
biological	 pathway	 proteins	 involved	 in	 EGFR	
Signalling	(6)	against	TGF	Beta	Receptor	Signalling	

Sobia Hassan et al.

Table-II:	Heat	Map	Showing	Differentially	Expressed	Proteins	&	their	Pathways	Interacting	with	
Genes	enriched	in	Signalling	by	EGFR	Pathway	and	TGF-beta	receptor	signaling	pathway	shown	in	Fig	1.

Biological pathway Fold 
enrichment

P-value
(Hyperg- 
eometric 
test)

Genes mapped 
(Signalling 
by EGFR 
Pathway)

Biological 
pathway

Fold 
enrich-
ment

P-value
(Hyper-
geometric 
test)

Genes mapped 
(TGF-beta receptor 
signaling Pathway)

EGF	receptor	
(ErbB1)	signaling	
pathway

4.894911 1.47E-05

PRKCD;	
HGS;	
PRKCA;	
SRC;	CDK1;	
PRKACA;	
ACTA2;

Regulation	of	
cytoplasmic	
and	nuclear	
SMAD2/3	
signaling

20.62231 1.32E-12

CREBBP;	
PRKCD;	PRKCA;	
CAMK2A;

EGFR-dependent	
Endothelin	
signaling	events

4.891105 1.47E-05

PRKCD;	
HGS;	
PRKCA;	
SRC;	CDK1;	
PRKACA;	
ACTA2;

EP300;	SRC;	
PRKACA;	
SMAD2;	SNTA1;

Signaling	events	
mediated	by	
Hepatocyte	
Growth	Factor	
Receptor	(c-Met)

4.875939 1.51E-05

PRKCD;	
HGS;	
PRKCA;	
SRC;	CDK1;	
PRKACA;	
ACTA2;

Signaling	by	
EGFR 55.02213 8.48E-11

PRKCD;	
HGS;	
PRKCA;	
SRC;	CDK1;	
PRKACA;

TGF-beta	
receptor	
signaling

20.62231 1.32E-12

CREBBP;	PRKCD;	
PRKCA;	EP300;	
SRC;	PRKACA;	
SMAD2;	SNTA1;	
CAMK2A;

Signal	
Transduction 4.464134 0.000291

PRKCD;	
HGS;	
PRKCA;	
SRC;	CDK1;	
PRKACA;

Signaling	
events	
mediated	by	
VEGFR1	and	
VEGFR2

4.864626 6.41E-07

CREBBP;	PRKCD;	
PRKCA;	EP300;	
SRC;	PRKACA;	
SMAD2;	SNTA1;	
CAMK2A;

Signaling	by	
PDGF 57.6263 5.31E-09

PRKCD;	
PRKCA;	
SRC;	CDK1;	
PRKACA;

EGFR-
dependent	
Endothelin	
signaling	
events

4.891105 6.10E-07

CREBBP;	PRKCD;	
PRKCA;	EP300;	
SRC;	PRKACA;	
SMAD2;	SNTA1;	
CAMK2A;

Signaling	by	
FGFR 47.31531 1.45E-08

PRKCD;	
PRKCA;	
SRC;	CDK1;	
PRKACA;

p38	MAPK	
signaling	
pathway

25.89165 6.78E-10

CREBBP;	PRKCD;	
PRKCA;	EP300;	
SRC;	PRKACA;	
SNTA1;

TGF-beta	
receptor	
signaling

11.79678 0.000169
PRKCD;	
PRKCA;	SRC;	
PRKACA;

Role	of	
Calcineurin-
dependent	
NFAT	
signaling	in	
lymphocytes

36.81247 8.49E-08
CREBBP;	PRKCD;	
PRKCA;	EP300;	
PRKACA;
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Fig.2:	Fold	Comparison	for	Biological	Pathway	
of	proteins	involved	in	EGFR	Signalling	(6)	

against	TGF	Beta	Receptor.

(9).	 The	 proteins	 in	 related	 to	 EGFR	 signalling	
pathways	 were	 enriched	 up	 to	 150	 fold	 while	
proteins	 in	 EGFR	 signalling	 were	 depleted	 more	
than	130	fold	(Fig.2).
Differential Expression Genes/Proteins and their 
Pathways: In	 Table-II,	 deep	 red	 boxes	 showed	
significant	 enriched	 pathways	were	 Signaling	 by	
EGFR	with	 fold	enrichment	of	more	 than	2	 folds	
and	 p-value:	 1.51E-05	 and	 TGF-beta	 receptor	
signalling	with	 fold	 enrichment	 of	more	 than	 10	
folds	 and	 p	 value:	 1.32E-12.	 The	 common	 genes	
related	 to	 these	 pathways	 are	 PRKCD;	 PRKCA;	
SRC;	CDK1;	PRKACA,	CREBBP;	PRKCD;	PRKCA;	
CAMK2A;	EP300;	SRC;	PRKACA;	SMAD2;	SNTA1	
are	shown	in	the	same	Table-II.

DISCUSSION

 Fibrosis	 is	 a	 characteristic	 feature	 of	 end-stage	
liver	disease	and	it	constitutes	a	predominant	cause	
of	global	rise	in	mortality	and	morbidity.1	Chronic	
hepatic	injury	irrespective	of	cause	is	characterized	
by	 hepatic	 stellate	 cells	 (HSCs)	 activation,	
proliferation,	 and	 migration	 within	 liver	 tissue.15 
These	HSCs	express	various	mesenchymal	markers	
upon	activation6.	 Expression	of	 two	 such	markers	
ACTA2 and	GFAP	 has	 been	 demonstrated	 in	 our	
previous	 study	 by	 using	 immunohistochemistry.9 
The	 management	 of	 hepatic	 fibrosis	 still	 remains	
a	 challenge	 therefore	 the	 identification	 of	 these	
proteins	and	their	interacting	pathways	involved	is	
critical	in	facilitating	early	diagnosis	and	designing	
target	therapeutic	modalities.16,17 
	 The	 Pathway	 analyses	 play	 a	 vital	 role	
understanding	 biological	 mechanisms	 underlying	

various	 disease	 processes.	 Therefore,	 they	 can	
help	 in	 identifying	more	potent	biomarkers	using	
dysregulated	pathways.13	We	used	a	network-based	
method	 to	 ascertain	 the	 dysregulated	 pathways	
elaborated	 in	 hepatitis	 C	 which	 may	 build	 new	
insights	into	pathogenesis	of	liver	fibrosis.18 TGF-β/
Smad	signaling	pathway	is	known	to	be	one	of	the	
key	fibrogenic	 and	 inflammatory	pathways	 in	 the	
liver.19	TGF-β1	have	been	implicated	in	the	process	
of	activating	HSCs	with	 the	magnitude	of	fibrosis	
being	 in	 proportion	 to	 increase	 in	 TGF	 β	 levels.	
Studies	have	shown	that	ACTA2	is	associated	with	
TGF β	pathway	that	enhances	contractile	properties	
of	 HSCs	 leading	 to	 fibrosis.20	 The	 results	 of	 our	
study	 show	 that	 biologic	 pathways	 associated	
with	GFAP	 and	ACTA2	 were	 signaled	 by	 TGF β 
receptor	 signaling	 which	 is	 consistent	 with	 the	
previous	studies.	On	the	basis	of	close	interaction	of	
proteins,	we	used	PPI	networks	to	identify	disease-
specific	 networks.	 Our	 study	 showed	 a	 number	
of	 proteins	 enriched	 in	TGFR	 signaling	 primarily	
involving	 PRKACA, PRKCA, CAMK2A, SRC, 
SMAD2, PRKCD, CREBB	 and	 SNTA1. Moreover,	
functional	enrichment	analysis	of	GFAP	and	ACTA2 
interacting	 proteins	 showed	 85.7%	 enrichment	 of	
proteins	 in	 signaling	pathways	 of	EGFR.	 This	 led	
to	identification	of	another	pathway,	the	epidermal	
growth	 factor	 receptor	 (EGFR or ErbB1)	 signaling	
system,	which	seems	to	be	strongly	associated	with	
the	 interacting	 proteins	 GFAP	 and	 ACTA2.	 This	
finding	may	be	due	 to	 the	 facilitation	of	 crosstalk	
between	signaling	pathways	by	EGFR,	resulting	in	
release	 of	 various	mediators	 of	 inflammation	 and	
repair.11 The	EGFR	signaling	is	reported	to	be	a	key	
element	in	not	only	fibrosis	but	also	the	proliferation	
of	fibrotic	liver	injury	to	neoplastic	transformation.
	 The	 study	 by	 Yang	 et	 al.	 has	 shown	 that	EGFs 
can	stimulate	proliferation	of	hepatic	stellate	cells,	
which	 is	 the	 primary	 effector	 cell,	 orchestrating	
the	 deposition	 of	 extracellular	 matrix	 (ECM)	 in	
fibrotic	liver.16 EGFR	showed	signaling	enrichment	
of	 proteins	 similar	 to	 those	 in	 TGFR,	 including	
PRKACA,	 PRKCA,	 SRC, SMAD2	 and	 PRKCD.	
Protein	 kinase	 C	 (PKC)	 is	 a	 group	 of	 calcium	
dependent	 proteins	 which	 regulate	 embryonic	
development.	Various	members	of	this	PKC	family	
have	 been	 implicated	 in	 progression	 of	 cell	 cycle,	
apoptosis	 and	 differentiation.21	 Protein	 kinase	 A	
family	 of	 proteins	 is	 activated	 in	 response	 to	 G	
coupled	 protein	 receptors22	while	PRKCD	 plays	 a	
key	role	in	autophagy	suppression	which	is	achieved	
by	 the	 process	 of	 phosphorylation	 of	AKT	 which	
further	 activates	 mTOR,	 specific	 for	 fibrolamellar	
carcinoma.23	 In	 current	 study,	 activity	 of	 c-SRC	
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decreases	 with	 progressive	 liver	 fibrogenesis	
and	 hepatic	 stellate	 cell	 (HSC)	 activation.	 This	
finding	 is	 consistent	with	 literature	which	 reports	
that	 inhibition	 of	 SRC	 Kinase	 promotes	 HCV	
replication.24	The	oncogenic	properties	of	SRC	family	
kinases	 have	 been	 reported	 with	 various	 studies	
upon	role	of	SRC	as	target	therapy	in	the	treatment	
of	idiopathic	pulmonary	fibrosis,	systemic	sclerosis	
and	glioblastoma.	However,	its	role	in	liver	fibrosis	
progression	is	not	yet	understood.25	SRC	along	with	
PRKACA, PRKCA	 and	 PRKCD	 must	 be	 further	
explored	to	establish	their	role	in	target	therapy	of	
hepatic	fibrosis	in	chronic	hepatitis.

CONCLUSION

	 In	 this	 analysis,	 many	 perilous	 pathways	 and	
genes	 were	 identified	 based	 on	 protein-protein	
interaction	 of	 network	GFAP	 and	ACTA2.	 EGFR 
and	TGF-beta	Receptor	Signalling	pathways	were	
found	 to	 be	 enriched	 in	 liver	 fibrosis	 through	
Protein	Interaction	studies.	SRC, PRKACA, PRKCA 
and PRKCD were	 enriched	 and	 differentially	
expressed	 in	both EGFR	 and	TGF-beta	Signalling	
pathways.	 These	 signalling	 pathways	 and	
related	 proteins	 are	 the	 potential	 targets	 for	
new	 therapeutic	 agents	 to	 combat	 liver	 fibrosis	
resulting	from	chronic	hepatitis	C.
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